

Road Asset Management (RAM) 9 – 12 September 2024

Session: Climate Resilient Road Management

Dr Theuns Henning

PhD (Civil Eng), FEngNZ, IntPE. t.henning@auckland.ac.nz

Source: World Bank

Source: Zoï Environment Network

Figure 19: Seismic hazard map for PGA with a 2% probability of exceedance in 50 years.

Source: CAREC

lient Road Management

- What level of adaptation is needed within a city/region
- Where are the priority risk exposure areas
- Where will our investment have the greatest impact to reduce damage and harm
- How could we integrate the resilience improvements with maintenance and renewals
- How could we respond and recover better from disasters

Context – The Problem we are Trying to Solve

- CONTROL Mitigate physical impact
- TRANSFER Limit financial loss and aid recovery

ACCEPT - Adaptive response arrangements

Consider multiple possible futures, where risk(s) change with time

Source: Hugh Cowen

A Criticality framework is key for this analysis

- Avoid ->Very small portion of the infrastructure where avoiding the risks may be appropriate – e.g. coastal infrastructure that gets damaged with every storm or high tidal event.
- Accept ->large portion of most infrastructure networks where the likely loss would be minimal and investing in adaptation for these parts would be uneconomical or even unnecessary.
- Control vs Transfer -> AM system helps us answer
 - Control->portion of the infrastructure where adaptation projects will control the potential losses from events. (Good return on investment)
 - Transfer different financing instruments such as insurance or bonds may be more practical

0

0

2

3

0

Financial Decision Making for Improved Resilience

Delay Investment or Manage Risk Differently

Avoid - Extreme Risks where investment will not make a difference *

> Transfer risk for low risk reduction return on investment (e.g. insurance)

Delay significant investment that 0 that is not required now (e.g. bridge relocation)

> Accept Risk for majority of the network having low probability or consequences

No Regret Investment

Harden and protect critical Infrastructure components

0

Harden and protect projects having a high risk reduction return for investment

Improve emergency and response protocols and resources

Post-disaster Build-Back-Better/ Different

Source: https://imgur.com/gallery/3F82Ot1

Sept 2024

Climate Resilient Road Asset Management

Source: Integrating Climate Change into Asset Management

Implementation of Climate Risk Assessment

Source: Blake-Manson and Henning

Asset Criticality

- **Strategic importance/significance** Indication of the strategic importance at a national, regional or local level.
- Inter-dependencies between different infrastructures In itself, an asset component may not be deemed critical, but there may be co-dependency with another asset component that is critical. For example, a powerline may not be highly used, but it may feed into a large wastewater treatment plant, thus making it critical.
- Lifelines The significance of infrastructure in terms of linking emergency services, hospitals and essential utilities. Lifeline considerations also include emergency response activities such as evacuation routes and temporary safe havens.
- **Redundancy** The capacity and redundancy in the system to cope with the loss of specific links in the services system

Infrastructure Fragility / Physical Vulnerability for Shock Events

Grade	Description	Condition x (Capacity or Utilisation)
Grade 1	withstand substantially more significant climate events compared to design standard	< 4
Grade 2	withstand more significant climate events compared to design standard	4 to 7
Grade 3	withstand the design standard climate event	8 to 11
Grade 4	not able to withstand the design standard climate event	12 to 18
Grade 5	not able to withstand minor climate events	> 19

Basic Level

Advanced Level

- In may countries, this is the #1 issue
- Normally very costly to restore
- Creating the perfect storm -> moisture + seismic activities

Rockfall attenuators protecting the road and preventing accidents. Photo courtesy of Michel Di Tommaso.

Gabion walls are used to control erosion. Photo courtesy of Michel Di Tommaso.

- Spring flooding
- Increased moisture conditions in pavements and subgrade
- Traffic interruption
- Loosing bridges

- Varying patterns on freeze-thaw
- Some countries have issues with losing permafrost

Source: Tensar

Treatment Categories

Adaptation Approach	Description	Examples
Avoid damage	In cases of extreme hazard exposure, or places where there is a certainty of infrastructure loss, the damage could be avoided by relocating infrastructure to less exposed areas.	Coastal roads that are low-lying thus prone to <u>overtop, and</u> moving inland is a more practical option.
Protecting road assets or construction new features	Various protection strategies exist to avoid hazards impacting road assets.	Flood protection structures Slope stabilisation techniques
Retrofitting existing infrastructure	Retrofitting involves strengthening or changing infrastructure to be less vulnerable to most likely hazard impacts.	Bridges could be retrofitted to withstand floods and seismic activities better. E.g. clippings to strengthen bridge deck's lateral stability on beams.
Catchment area improvements	Taking a more holistic approach to reducing the hazard exposure for a geographic area.	Improving overall catchment/stormwater drainage or improving run-off characteristics
Do minimum or nothing	Don't take any resilient specific actions other than increased maintenance and renewals.	Situations where higher priorities elsewhere or funding constraints prohibited investment into resilient options.
Delay adaptation to post-event	In some more costly adaptation options, it may be more economical to delay an adaptation strategy until after an event.	Bridge structures that will require costly relocation could still be functional until the next significant events. A new bridge is constructed elsewhere or at an increased height or strength on destruction.

Some General guidance is provided on climate impact on surfaces and ways to deal with it

Impacts on the Road Surface	Characteristics Required of the Surface	Potential Technologies
Mechanical damage to the road surface from wind-borne debris (e.g. trucks overturning)	 More robust surface (it is not often that specific allowance is made for high winds) 	 Modified mixtures such as epoxy- modified surfaces, fibre-reinforced binder
Delamination of the surface	Surfaces less prone to delamination	Use of prime coats or tack coatsSingle-layer asphalt
Water ingress through the surface	• Using less permeable surfaces (e.g. a dense graded asphalt less permeable than, say a single layer chip seal surface).	 Close/dense-graded asphalt mixture options or cape seal Crack-resistant surfaces
Decreasing viscosity of the bitumen binder leads to flushing	Temperature-resistant surfaces	Modified binders used in epoxy asphalt and chip seals
Increased hardening of the bitumen (oxidation)		Use of warm mix asphalt to reduce oxidation during mixing and to improve long-term durability

Reducing the Impact of Climate Change

Resilience with respect to an event (e.g. Flooding, fire, earthquake, etc.) is characterized by two parameters:

- Drop in performance, induced by the event (e.g. reduced ability to carry load).
- Recovery time to reinstate or improve performance.

Allowance for Climate change

Parameter	Year			
	1990 to 2025	2025 to 2055	2055 to 2085	2085 to 2115
Peak rainfall intensity	+ 5%	+ 10%	+ 20%	+ 30%
Peak river flows	+ 5%	+ 10%	+ 20%	+ 30%
Sea surface water rise	10 cm	15 cm	25 cm	35 cm

Grassed Swale

Climate- Resilient Road Design

Raised formation level

Maintenance

- Adequate road maintenance is the most critical and efficient way of reducing the impact of a changing climate on the road system.
- In the absence of an adequate maintenance regime, the damage caused by climactic events is exacerbated
- Thus, maintenance of pavements and sealing activities; regular maintenance of bridges, culverts and drainage structures to ensure they are functional and not obstructed;
- maintenance and improvement of slope protection works; and
- systematic assessments to identify and incrementally address vulnerable and critical road sections are the first defence against climate risks.

ROAD NOTE 31

A Guide to the Structural Design of Surfaced Roads in Tropical and Sub-tropical Regions

Integrating Climate Resilience into Road Networks

Foreign, Commonwealth & Development Office **Transport & ICT**

Integrating Climate Change into Road Asset Management

Technical Report APRIL 2017

Dr Theuns Henning

t.henning@auckland.ac.nz