

CAREC Road Safety and Sustainable Mobility Course

February 2024

Safer Roads and Roadside Infrastructure

"Investigating High Crash Frequency Sites" (blackspots)

Phillip Jordan, ADB Road Safety Engineering Consultant Egidijus Skrodenis, MC Mobility Consultants GmbH

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Objectives of this session:

- For you to work in small teams to investigate some hazardous locations on CAREC roads and to recommend practical countermeasures.
- To learn by doing.
- To appreciate the need for good crash data.

WHAT IS A BLACKSPOT?

- A blackspot is any site with many casualty crashes
- Casualty crash means a fatal crash, or a crash in which at least one person is injured (serious or slight)
- Intersections, short lengths, or curves = blackspot
- Road length of 1km = black length

Engineers need good crash data

Engineers <u>need</u> to know:

Where the crash happened (accurately), when it happened (day/night)

The road users involved (direction, type)

Conditions at the time – rain, wind, fog, snow, sun

Engineers need good crash data

Engineers <u>do not</u> need: Names, addresses of people involved Vehicle registration details Police prosecution information (alcohol, speed or drugs)

Figure 5: The 8 Key Steps in the Investigation Stage of the Blackspot Process

BCR = benefit/cost ratio. Source: ADB road safety engineering consultant.

Engineers look for *patterns* in the crashes

Draw a collision diagram

Figure 6: A Collision Diagram for a Blackspot at a Crossroad Intersection

Note: This collision diagram illustrates a clear pattern of right-angle collisions, with 9 out of 14 crashes involving vehicles from the north.

- For each vehicle in the crash, draw an arrow to show its direction
- Show pedestrians, cars, trucks, buses differently

Draw a crash factor matrix

- For each crash summarize the details in one column.
- This offers patterns such as day/time/light & road conditions

Crash Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Date: Month	3/06	04/10	19/11	08/06	03/07	07/11	30/12	27/02	03/05	24/07	18/04	21/05	14/06	20/08
Day of the week	Sat	Wed	Thurs	Sun	Thurs	Fri	Tue	Fri	Sun	Fri	Sun	Fri	Mon	Fri
Time of day	1700	1855	1530	1900	1345	2145	1900	1220	1800	2000	1845	1610	1735	1855
Severity	3	3	2	3	2	4	3	3	4	2	3	2	2	3
Light conditions														
Road conditions	Wet	Wet	Dry	Wet	Dry									
DCC Code	110	110	110	110	110	110	110	110	110	110	110	110	110	110
Object 1	Car	Car	Car	Car	Car	Car	Car	Car	Car	Car	Car	Car	Van	Car
Object 2	Car	Car	Truck	Car	Car	Car	Car	Truck	Car	Car	Car	Car	Car	Car
Object 3					Car			Car			Car			
Direction 1	Ν	S	Ν	S	N	S	S	S	S	S	Ν	S	N	S
Direction 2 (& 3)	W	Е	W	Е	Е	Е	W	Е	W	Е	Е	Е	Е	Е

Diagnose the crash problem

Examine the Collision Diagram and the Crash Factor Matrix

Look for *patterns*?

- Day time vs nighttime?
- Wet vs dry?
- Type of crash head on, or run-off-road, pedestrian etc
- Type of road user?
- Direction of travel?

Inspect the site –
look forPut yourself in the shoes of those involved.contributing factors
to the pattern of
crashesAsk yourself why did they have their crash?

Today, your site inspections will be done from photographs

Today, your site inspections will be done from photographs

· # EEE [] [

Today, your site inspections will be done from photographs

Be logical

Work in your team.

Recommend only countermeasures that <u>will</u> reduce the crashes

(For example, if crashes happened mainly during daytime, do <u>not</u> install street lighting as a countermeasure

And do not replace the nearby barrier simply because it may be old or rusty, <u>unless</u> it played a direct role in the crashes)

Develop countermeasures – discuss them with colleagues.

Keep your ideas simple Use low-cost options wherever possible Persevere – some sites are difficult, but most locations will be open to low-cost countermeasures

Finalise a preliminary design, and calculate a benefit/cost ratio for the recommendations There will be competition for funding within a national blackspot program. Your national road authority will need to rank all the sites so that funds are spent on those sites that will return the "best value" to your country.

Next - calculate benefits and costs

Costs are easy! But how do we calculate the <u>benefits (in \$)</u>.

Benefits = the number of crashes we expect to <u>save</u>, times how much would each one costs your country (in \$).

Crash reduction factors

PAVEMENT WORKS	%	YEARS
Road reconstruction	25%	20
Duplication short length	30%	20
Install raised median	30%	20
Add median strip	20%	20
Widen pavement	10%	20
Construct overtaking lane	25%	20
Add lane	10%	20
Widen road for Right Turn lane	50%	20
Widen road for Left Turn lane	15%	20
Lane widening - 0.3m	5%	20
Lane widening - 0.6m	12%	20
Widen shoulder not seal - 0.3m	3%	20
Widen shoulder not seal - 0.6m	7%	20
Widen shoulder not seal - 1m	10%	20
Widen shoulder and seal - 0.3m	4%	20
Widen shoulder and seal - 0.6m	8%	20
Widen shoulder and seal - 1m	12%	20

How to determine benefits and costs?

- 1. Establish your countermeasures
- 2. Get the Crash Reduction Factor the *highest CRF* of those in your treatments
- 3. Agree on a crash cost (\$) for your country
- 4. Calculate the benefits of your treatments (\$)
- 7. Calculate the cost of the works (\$)
- 8. Calculate the benefit/ cost ratio
- 9. Head Office will approve funding based on BCR's.

Crash reduction factors based on real experience from the Victorian (Australia) blackspot program since 1980

DELINEATION

30%	20
20%	15
75%	15
35%	15
50%	15
30%	5
40%	5
25%	5
35%	5
30%	5
20%	5
	30% 20% 75% 35% 50% 30% 40% 25% 35% 35% 30% 20%

Treatments	Crash Reduction Factors	Treatment Life
INTERSECTION		
New roundabout (urban, single lane)	70%	20
New roundabout (rural, single lane)	80%	20
Modify roundabout (approach deflection)	55%	20
New traffic signals	45%	20
Convert intersection signals to roundabout	30%	20
Staggered T low volume (<2000 AADT of through road)	70%	20
Removal of Y-intersection	85%	20
Splitter islands/median, urban	20%	20
Splitter islands rural, low volume	45%	20
Linemarking to improve intersection definition	10%	5
Improve sight distance (remove/relocate obstruction)	50%	20
Improve signage	30%	15
Rumble strips on approaches	30%	5
Install Stop signs	30%	15
Install signs	30%	15
Change to Stop signs	5%	15

ROADSIDE HAZARD MANAGEMENT			
Wire Rope Safety Barrier (WRSB)	45%	20	
Guardrail	35%	20	
Median barriers (any type including centreline WRSB)	20%	20	
Guard rail at culvert	25%	20	
Guardrail for bridge end post	20%	20	
Crash Cushions	15%	20	
PEDESTRIANS & CYCLISTS			
Refuges, Channelisation, Kerb extension	30%	20	
Pedestrian signals	25%	15	
Bicycle paths, threshold treatments	10%	20	
Upgrade pedestrian signals	20%	15	
Pedestrian overpass	10%	20	
MOTORCYCLISTS			
New roundabouts	75%	20	
Intersection signal remodel	50%	15	
Fully Controlled Right Turn	55%	15	
Shoulder sealing	50%	20	
STREET LIGHTING			
Provision of street lighting general	25%	15	
Improve lighting at intersections	25%	15	
Improve lighting at roadway segment	25%	15	
Improve lighting at PEDESTRIAN CROSSING 40%			
Improve lighting at railway crossing	10%	15	

An example of calculating benefits. Use the largest Crash Reduction Factor from your package of countermeasures

- 20 reported crashes in 5 years
- A roundabout will reduce 70% (14) of these crashes
- 20 years = 4 x 14 = 56 fewer crashes
- One fatality in this CAREC country = \$78,000 USD (approx.)
- One serious casualty = \$19,500 USD
- Assume a serious <u>casualty crash</u> = \$27,300
- 56 x \$27,300 = \$1,529,000 benefits in 20 years

Benefit/ Cost Ratio BCR

- Benefits of a roundabout = \$1,529,000 USD
- Cost of the roundabout = \$460,000 USD

BCR = 3.33

(This is a good BCR and will likely receive funding approval)

CASE STUDIES

Four blackspots:

- 1. A rural junction
- 2. An urban pedestrian blacklength
- 3. A rural Y-junction
- 4. A blacklength through a village

What main planning problems do you see? What local crash patterns do you see? What treatments will you recommend? What is your estimated BCR?

10 minutes

New and old roads connections

Google

Analysed road section

1^{st.} Point. U-turn, turn to the left

2^{nd.} Point. Road view

3^{rd.} Point. Junction of old new roads

3^{rd.} Point. Junction of old new roads

4^{th.} Point. Road view

5^{th.} Point. Junction and pedestrian crossing

5^{th.} Point. Junction and pedestrian crossing

Accidents points

Crash details

CRASH NUMBER	1	2	3	4	5	6	7
DATE	11/6	14/2	11/7	29/7	28/8	1/4	5/9
DAY OF WEEK	SUN	SAT	SAT	SUN	WED	SUN	WED
TIME OF DAY	13.00	23.30	20.30	16.50	23.00	18.30	22.00
SEVERITY	1	2	2	3	1	2	2
LIGHT CONDITION							
ROAD CONDITION	WET	DRY	DRY	DRY	DRY	WET	DRY
CRASH TYPE	207	307	103	103	104	103	001
VEHICLE 1	CAR	CAR	BUS	BUS	CAR	CAR	CAR
VEHICLE 2	CAR	TRUCK	TRUCK	CAR	M/C	BUS	PED
VEHICLE 3							
OBSERVATIONS			SPEED	SPEED			SPEED

Solution for the section

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Case study 2

Urban arterial pedestrian blacklength. 14 crashes in past 3 years. Mainly at night.

Case study 2 – crash factor matrix

CRASH NUMBER	1	2	3	4	5	6	7	8	9	10	11	12	13	14
DATE	12/3	5/5	11/10	29/11	20/1	28/3	1/4	5/9	8/12	31/12	2/2	10/3	5/6	7/9
DAY OF WEEK	SUN	FRI	WED	WED	SAT	WED	SUN	WED	SAT	MON	MON	SUN	WED	SAT
TIME OF DAY	01.15	22.30	19.20	17.50	11.10	20.55	18.30	23.00	14.40	04.00	06.45	23.30	?	20.30
SEVERITY	1	2	2	3	3	3	2	1	3	1	3	1	2	2
LIGHT CONDITION													?	
ROAD CONDITION	WET	DRY	DRY	DRY	DRY	DRY	WET	DRY	WET	DRY	DRY	DRY	?	DRY
CRASH TYPE	003	003	001	303	001	102	207	002	102	004	001	502	?	301
VEHICLE 1	CAR	CAR	BUS	BUS	CAR	CAR	M/C	CAR	CAR	CAR	M/C	M/C	PED	CAR
VEHICLE 2	PED	PED	PED	TRUCK	PED	BIKE	CAR	PED	M/C	PED	PED		?	CAR
VEHICLE 3				CAR										CAR
DIRECTION VEH. 1	E	E	E	w	W	E	W	W	E	E	W	E	?	E
DIRECTION VEH.2	Ν	N	N	W	S	S	W	N	S	N	S	N	?	?
DIRECTION VEH.3				E										W
OBSERVATIONS	ALC	ALC	SPEED					ALC & SPEED				SPEED		U TURN

A subway is under here

This is the subway

Your turn to present your recommended countermeasures

One recommended treatment

A different package of treatments was adopted.

100

pepsi.

зудтайер

A different package of treatments was adopted.

7 Martin

100

Case study 3

12 casualty crashes in 3 years

Case study 2

CRASH NUMBER	1	2	3	4	5	6	7	8	9	10	11	12
DATE	12/3	14/5	11/7	29/1	28/3	1/4	5/9	8/2	31/4	26/6	10/8	7/9
DAY OF WEEK	SUN	FRI	WED	WED	WED	SUN	WED	SAT	MON	TUES	SUN	SAT
TIME OF DAY	13.00	23.30	20.30	16.50	23.00	18.30	22.00	17.40	04.00	04.00	23.30	20.30
SEVERITY	1	2	2	3	1	2	2	1	1	2	1	3
LIGHT CONDITION												
ROAD CONDITION	WET	DRY	DRY	DRY	DRY	WET	DRY	WET	DRY	WET	DRY	DRY
CRASH TYPE	202	202	202	301	202	202	001	202	301	802	202	102
VEHICLE 1	CAR	CAR	BUS	BUS	CAR	M/C	CAR	CAR	CAR	TRUCK	M/C	CAR
VEHICLE 2	BUS	TRUCK	TRUCK	CAR	M/C	BUS	PED	CAR	M/C	?	TRUCK	CAR
VEHICLE 3										?		
DIRECTION VEH.1	Е	Е	S	S	S	S	S	Е	Ν	NW	Е	E
DIRECTION VEH.2	Ν	Ν	NW	S	NW	NW	Е	S	Ν	?	S	W
DIRECTION VEH.3												
OBSERVATIONS			SPEED	SPEED						MAY HAVE BEEN ANOTHER VEH INVOLVED	SPEED	

Collision Diagram

12 crashes in 3 years

5 fatal crashes (8 lives lost)5 serious injury crashes (12 people injured)2 minor injury crashes

Estimated cost of these 12 crashes

8 deaths x \$600,000 (fatalities)
12 injuries x 0.25 x \$600,000
TOTAL \$6,600,000 in 3 years or av. \$2,200,00 pa.

What patterns do you see?

What will you recommend?

What is the BCR?

Y-JUNCTION BLACKSPOT ON M36

ТАЛДЫҚОРҒАН TALDYKORGAN²⁶⁰

950

КАРАҒАНДЫ Каragandy

Case study 3

What crash patterns do you see?

What treatments will you recommend?

What is your estimated BCR?

10 minutes

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Your turn to present your recommended countermeasures

Remove Y junction – 85% crash reduction factor

85% of \$2,200,000 pa to be saved for 20 years

= \$37,400,000 benefits

Cost of new intersection = \$2,500,000

BCR = 15

Case study 4

Google Earth

Image © 2019 DigitalGlobe

And in case of the second s

Six pedestrian fatalities, plus many other serious casualty crashes, in 2 years. No crash data. Local knowledge only .

Case study 4

Case study 4

What crash patterns do you see?

What treatments will you recommend?

What is your estimated BCR?

10 minutes

Your turn to present your recommended countermeasures

My recommendations:

- Large gateway signs each end of village
- 40km/h speed limit
- Flat top road humps each 100m, with kerb extensions
- Zebra Crossings only on humps near mosques, schools

Crash reduction factor 30% for 20 years

Crash savings = \$2,675,000

The humps, sealing, signs and line marking will cost \$225,000

```
Benefits = $2,675,000
Costs = $225,000
```

BCR = 11.9

This project will be compared with all other blackspots in the country – those with the highest BCR's will be treated first. The others will wait for next year....

We look forward to your questions