

Road Asset Management (RAM) Georgia 12-15th September 2022

Session: Asset Condition Data Collection for Major Asset Types

Dr Theuns Henning
PhD (Civil Eng), CMEngNZ, IntPE.
t.henning@auckland.ac.nz

- Data Collection as part of the Road Asset
 Management System decision and reporting cycle
- Types of data
- Data collection techniques
- Data collection principles and strategies

Source ALPTEST

Source PIARC

Why do we need the data?

How many assets do I manage?

What is the value of the assets

How are the assets performing?

How safe and comfortable are the road user experience?

What are the long-term investment needs?

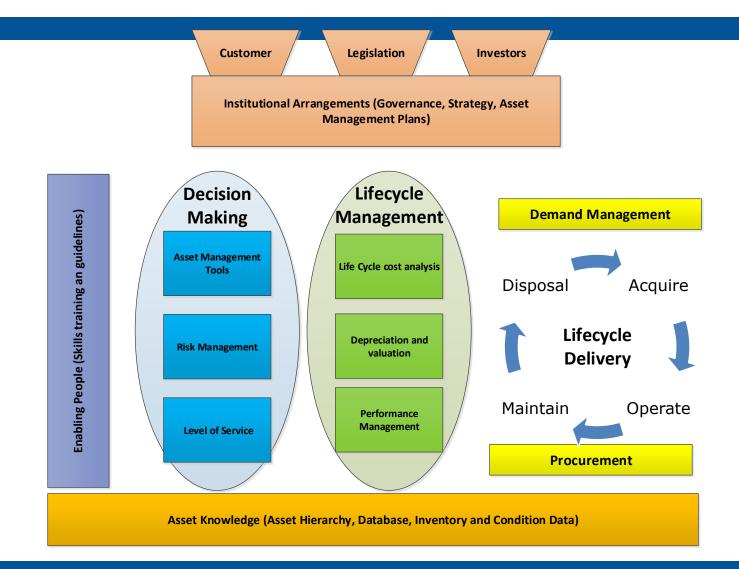

What maintenance works are required

Photo: Macos.livejournal.com

All RAM Activities Depends on Good Data

Types of Data We Collect

Inventory

- Physical elements of system
- Do not change markedly over time

Condition

- Change over time
- Require regular (or irregular) monitoring

Maintenance Records and Cost

 Cost and detailed works recorded for maintenance

Use

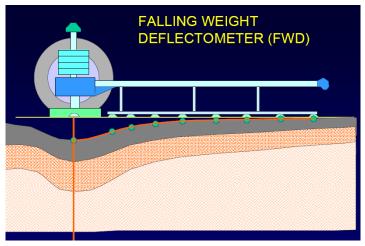
- Traffic Volumes
- Truck numbers and loading

Customer Feedback

- User satisfaction surveys
- Records from complaint system

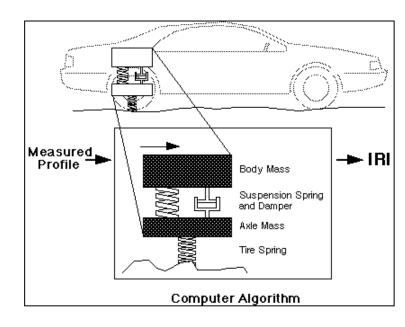
Pavement Data Framework

Evaluation Type	Pavement Function	Pavement Characteristics	Examples of Indicators and Indexes	
			IRI	
	Serviceability	Roughness	PSI	
Functional			QI	
Evaluation	Safety	Texture	Macrotexture	
		rexture	Microtexture	
		Skid Resistance	Skid Resistance Coefficient	
		onia Nesistarice	IFI	
		Mechanical Properties	Deflections	
Structural	Structural Capacity		Cracking	
Evaluation 		Pavement Distress	Surface Defects	
			Profile Deformations	
Referencing System		(Location of Pavement Characteristic Data)		



Pavement Strength Testing

- Falling Weight Reflectometers
- Rolling Deflection Measurements



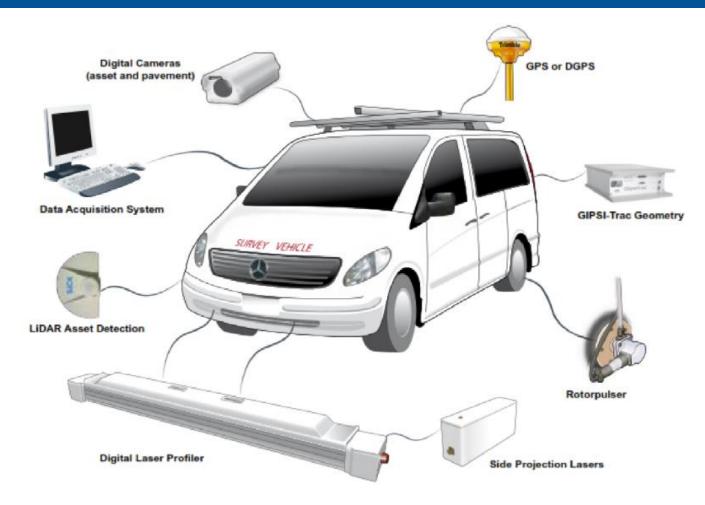
Roughness- International Roughness Index

- 'Bumpiness' of road
- Usually related to serviceability but also reflects structural deterioration
- Affects VOC, safety, comfort, speed
- Most commonly expressed as IRI
- IRI simulates response of 'Quarter-car' to road profile

Roughness Measurements

Class I

Class III



Source World Bank

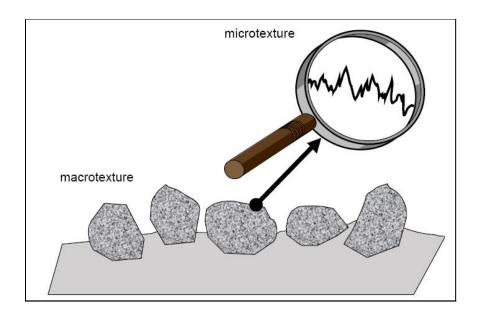
Class 1 - Laser

Source PIARC

Scanning Lasers

- Road crack detection
- Road rut detection Road macro-texture evaluation (MPD)
- Road ravelling evaluation Pothole detection (area, depth, volume)
- Detection of lane markings, shoulders, dropoffs, curbs
- Detection of joints and faulting on concrete roads
- Longitudinal Profile and Roughness (IRI) Road Geometry (gradient, cross-slope and radius of curvature) – optional

Source: DCL & ROMDAS

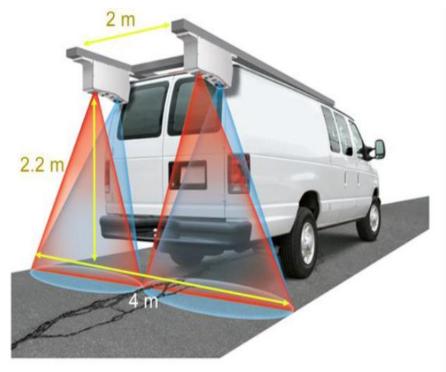

- Measured using discrete sensors (ultrasonic/laser) or line
- Data analyzed to simulate rut depth under a straight edge
- Systematic underrecording with discrete sensors

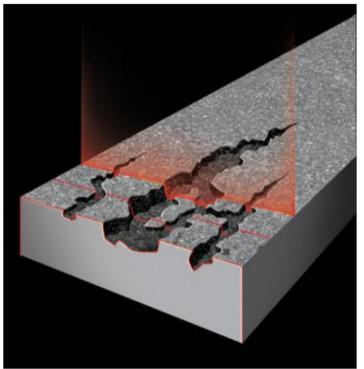
- Measurements focus on microtexture and macrotexture
- High speed measurements use lasers
- Expressed as the Mean Profile Depths

Skid Resistance Measurements

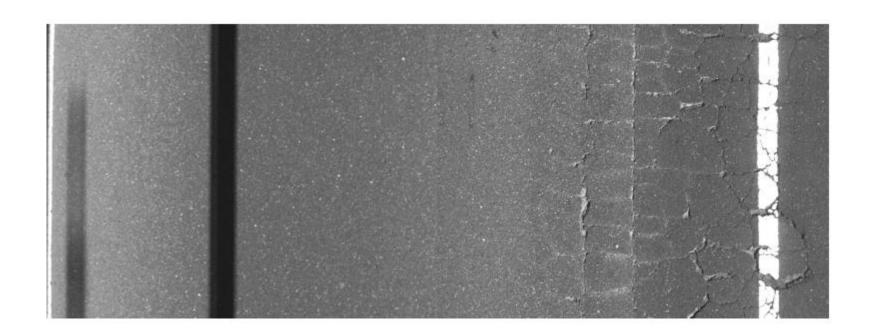
Griptester

British Pendulum


SCRIM



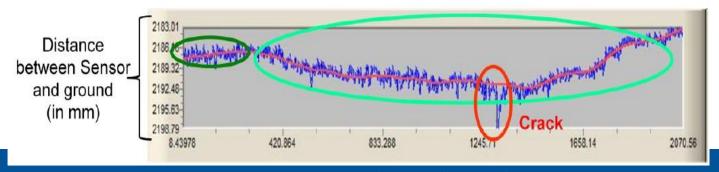
Laser Crack Measurement System (LCMS)



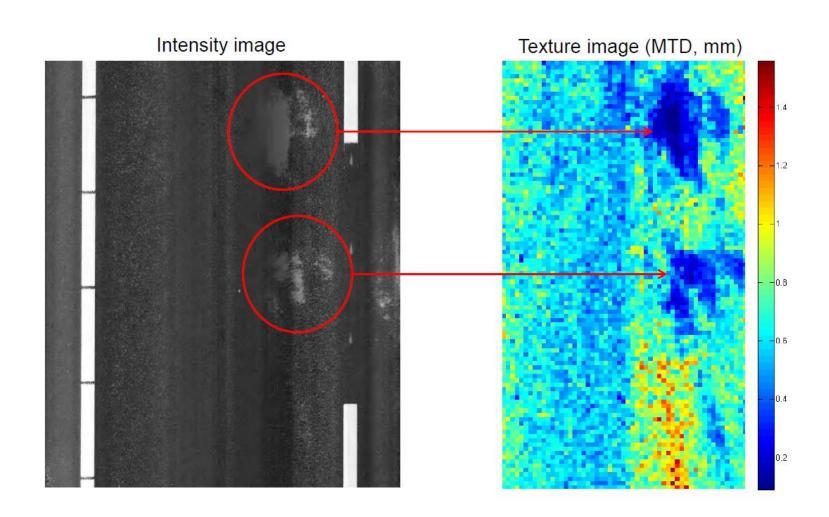
Source Pavemetrics

Images from Line Scan

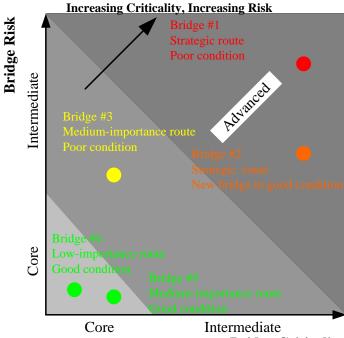



Source ARRB

LCMS Processing of Data



Detecting Bleeding



Risk and Criticality Based Strategy for Bridge Data Collection

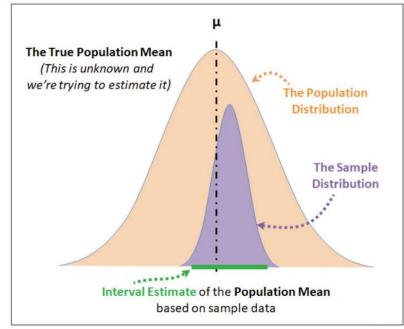
Data collection regime	Failure risk- criticality band	Assessment resolution	Data collection tools
Core	Low	Aggregate bridge risk	Visual inspections every 3-6 years
			Limited, usually reactive SHM
Intermediate	Intermediate	Individual limit state risks	Visual inspections every 2-3 years
			Some, reactive and proactive SHM
Advanced	High	Individual structural or	Visual inspections every 1-2 years
		functional element risks	Extensive, mostly proactive SHM

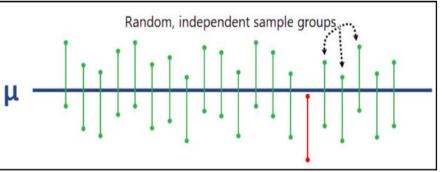
Bridge Data Collection Regimes

DEVELOPMENT LEVEL	VI, TESTING AND MONITORING PROGRAMME	INSPECTION FREQUENCY				
		General inspections	Special inspections	Routine surveillance inspections		
Core	Routine surveillance inspections, general inspections, programmed special inspections, reactive NDE	3–6 years	As identified during general inspection process or as planned by the	As required by contractual arrangement (eg annual)		
Intermediate	Routine surveillance inspections, general inspections, programmed special inspections, reactive and proactive NDE, network SHM data	2–3 years	bridge asset manager (eg access to critical elements or components)			
Advanced	Routine surveillance inspections, general inspections, programmed special inspections, reactive and proactive NDE, network SHM and bridge-specific SHM	1-2 years				

Bridge Inspections

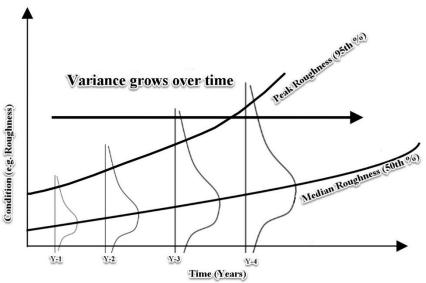
NZTRANSPORT AGENCY WAGA SCORES			Bridge routine surveillance inspection report		Supplier logo			
Network area:			Bridge name:		Highway:	RP:	BSN:	
	ng code			Bridge type:		Map ref. (easting):		
1 = Sat	inspecte isfactory			Deck width:		Map ref. (northing):		
R = Ro	utine main	inspection tenance (provide comment)		Total bridge length:		Owner:		
	uctural m applicable	aintenance (provide comment & le	photo)	Spans:		RCA:		
Inspec	tor:				Reviewer:			
Date (n	nth/yr):				Date (mth/yr):			
Item	Descrip	scription Mark		Defect Description/Remedial Work			Priority (H/M/L)	Estimated Cost
1	1 Signs							
2	2 Superstructure/deck drainage							
3 Movement/expansion joints								
4 Carriageway and deck surfacing								
5 Approach adequacy								
6 Guardrail/handrail								
7	7 Road marking							
8	8 Flood debris/vegetation							
9	9 Scour/erosion							
10 Other defects								

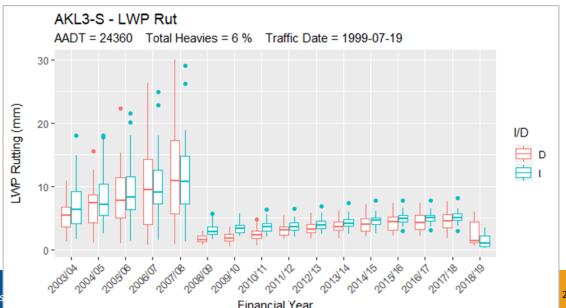

Photo -Inspecterra



Principles for sampling data collection

- We cannot always afford to measure a 100% of the network
- For some applications it is ok, depending on what you use the data for





Survey Frequency

- Network Level
 - Frequent enough to detect
- Project level
 - Have to catch a site before it bec
- Frequency is a function of:
 - Section criticality
 - Network planning cycle

3

Inventory Data

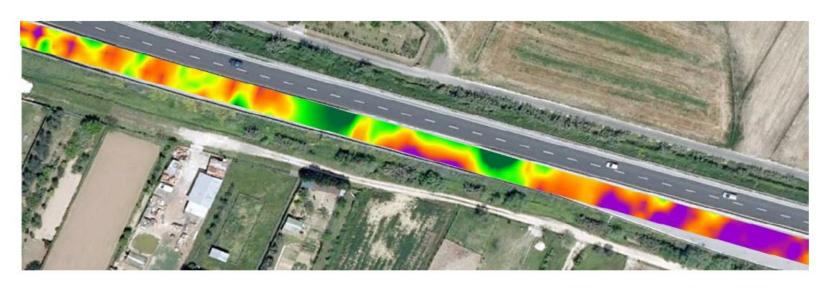
- One off exercise
- Updated/verified ~5 years

Pavement Condition Data

- Main roads 1-2 years
- Minor roads ~2-3 years

Bridge Condition Data

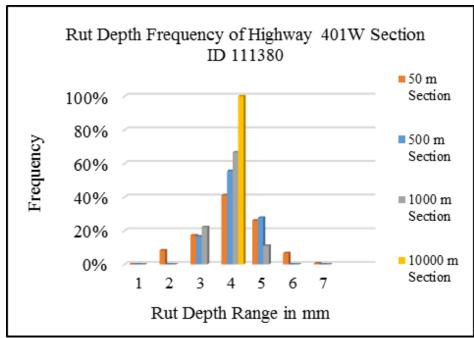
- Regular surveys 1-2 years
- Intensive surveys ~5 years

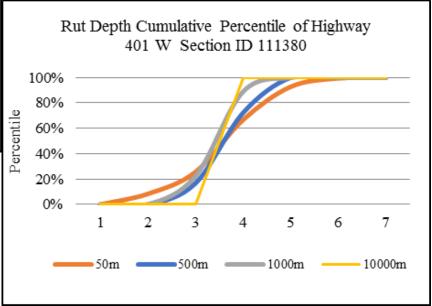

Traffic Data

- Permanent count stations (24/7/365)
- Short-term count stations (~ 1 7 days)

Homogeneous Section Lengths

- Rectify any problem before overlaying
- Better the QA
- Lower the risk
- Longer life
- Lower life cycle costs




Source WDM

Importance of Section Length

Questions

t.henning@auckland.ac.nz